972 resultados para opportunistic job scheduling policy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cluster computing has come to prominence as a cost-effective parallel processing tool for solving many complex computational problems. In this paper, we propose a new timesharing opportunistic scheduling policy to support remote batch job executions over networked clusters to be used in conjunction with the Condor Up-Down scheduling algorithm. We show that timesharing approaches can be used in an opportunistic setting to improve both mean job slowdowns and mean response times with little or no throughput reduction. We also show that the proposed algorithm achieves significant improvement in job response time and slowdown as compared to exiting approaches and some recently proposed new approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growing computational power requirements of grand challenge applications has promoted the need for merging high throughput computing and grid computing principles to harness computational resources distributed across multiple organisations. This paper identifies the issues in resource management and scheduling in the emerging high throughput grid computing context. We also survey and study the performance of several space-sharing and time-sharing opportunistic scheduling policies that have been developed for high throughput computing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we propose a scalable and fault-tolerant job scheduling framework for grid computing. The proposed framework loosely couples a dynamic job scheduling approach with the hybrid replications approach to schedule jobs efficiently while at the same time providing fault-tolerance. The novelty of the proposed framework is that it uses passive replication approach under high system load and active replication approach under low system loads. The switch between these two replication methods is also done dynamically and transparently.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Autonomic middleware services will play an important role in the management of resources and distributed workloads in emerging distributed computing environments. In this paper, we address the problem of autonomic grid resource scheduling and propose a scheduling infrastructure that is capable of self-management in the face of dynamic behavior inherent to this kind of systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Job scheduling is a complex problem, yet it is fundamental to sustaining and improving the performance of parallel processing systems. In this paper, we address an on-line parallel job scheduling problem in heterogeneous multi-cluster computing systems. We propose a new space-sharing scheduling policy and show that it performs substantially better than the conventional policies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In an enterprise grid computing environments, users have access to multiple resources that may be distributed geographically. Thus, resource allocation and scheduling is a fundamental issue in achieving high performance on enterprise grid computing. Most of current job scheduling systems for enterprise grid computing provide batch queuing support and focused solely on the allocation of processors to jobs. However, since I/O is also a critical resource for many jobs, the allocation of processor and I/O resources must be coordinated to allow the system to operate most effectively. To this end, we present a hierarchical scheduling policy paying special attention to I/O and service-demands of parallel jobs in homogeneous and heterogeneous systems with background workload. The performance of the proposed scheduling policy is studied under various system and workload parameters through simulation. We also compare performance of the proposed policy with a static space–time sharing policy. The results show that the proposed policy performs substantially better than the static space–time sharing policy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The advent of commodity-based high-performance clusters has raised parallel and distributed computing to a new level. However, in order to achieve the best possible performance improvements for large-scale computing problems as well as good resource utilization, efficient resource management and scheduling is required. This paper proposes a new two-level adaptive space-sharing scheduling policy for non-dedicated heterogeneous commodity-based high-performance clusters. Using trace-driven simulation, the performance of the proposed scheduling policy is compared with existing adaptive space-sharing policies. Results of the simulation show that the proposed policy performs substantially better than the existing policies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the primary issues associated with the efficient and effective utilization of distributed computing is resource management and scheduling. As distributed computing resource failure is a common occurrence, the issue of deploying support for integrated scheduling and fault-tolerant approaches becomes paramount importance. To this end, we propose a fault-tolerant dynamic scheduling policy that loosely couples dynamic job scheduling with job replication scheme such that jobs are efficiently and reliably executed. The novelty of the proposed algorithm is that it uses passive replication approach under high system load and active replication approach under low system loads. The switch between these two replication methods is also done dynamically and transparently. Performance evaluation of the proposed fault-tolerant scheduler and a comparison with similar fault-tolerant scheduling policy is presented and shown that the proposed policy performs better than the existing approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper considers a firm real-time M/M/1 system, where jobs have stochastic deadlines till the end of service. A method for approximately specifying the loss ratio of the earliest-deadline-first scheduling policy along with exit control through the early discarding technique is presented. This approximation uses the arrival rate and the mean relative deadline, normalized with respect to the mean service time, for exponential and uniform distributions of relative deadlines. Simulations show that the maximum approximation error is less than 4% and 2% for the two distributions, respectively, for a wide range of arrival rates and mean relative deadlines. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The utilization of the computational Grid processor network has become a common method for researchers and scientists without access to local processor clusters to avail of the benefits of parallel processing for compute-intensive applications. As a result, this demand requires effective and efficient dynamic allocation of available resources. Although static scheduling and allocation techniques have proved effective, the dynamic nature of the Grid requires innovative techniques for reacting to change and maintaining stability for users. The dynamic scheduling process requires quite powerful optimization techniques, which can themselves lack the performance required in reaction time for achieving an effective schedule solution. Often there is a trade-off between solution quality and speed in achieving a solution. This paper presents an extension of a technique used in optimization and scheduling which can provide the means of achieving this balance and improves on similar approaches currently published.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In 2006 the Route load balancing algorithm was proposed and compared to other techniques aiming at optimizing the process allocation in grid environments. This algorithm schedules tasks of parallel applications considering computer neighborhoods (where the distance is defined by the network latency). Route presents good results for large environments, although there are cases where neighbors do not have an enough computational capacity nor communication system capable of serving the application. In those situations the Route migrates tasks until they stabilize in a grid area with enough resources. This migration may take long time what reduces the overall performance. In order to improve such stabilization time, this paper proposes RouteGA (Route with Genetic Algorithm support) which considers historical information on parallel application behavior and also the computer capacities and load to optimize the scheduling. This information is extracted by using monitors and summarized in a knowledge base used to quantify the occupation of tasks. Afterwards, such information is used to parameterize a genetic algorithm responsible for optimizing the task allocation. Results confirm that RouteGA outperforms the load balancing carried out by the original Route, which had previously outperformed others scheduling algorithms from literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent trends in grid computing development is moving towards a service-oriented architecture. With the momentum gaining for the service-oriented grid computing systems, the issue of deploying support for integrated scheduling and fault-tolerant approaches becomes paramount importance. To this end, we propose a scalable framework that loosely couples the dynamic job scheduling approach with the hybrid replications approach to schedule jobs efficiently while at the same time providing fault-tolerance. The novelty of the proposed framework is that it uses passive replication approach under high system load and active replication approach under low system loads. The switch between these two replication methods is also done dynamically and transparently.